Spatial dispersion in atom-surface quantum friction
نویسندگان
چکیده
منابع مشابه
Friction-induced energy-loss rainbows in atom surface scattering.
The rainbow is due to extrema of the angular deflection function of light impinging on water drops. Generically, extrema of suitably defined deflection functions lead to rainbows. These include angular and rotational rainbows in surface scattering and more. Here we introduce the concept of an "energy-loss deflection function" for scattering of particles from a periodic surface whose extrema lea...
متن کاملSpatial-dispersion cancellation in quantum interferometry
We investigate cancellation of spatial aberrations induced by an object placed in a quantum coincidence interferometer with type-II parametric down conversion as a light source. We analyze in detail the physical mechanism by which the cancellation occurs and show that the aberration cancels only when the object resides in one particular plane within the apparatus. In addition, we show that for ...
متن کاملTuning friction atom-by-atom in an ion-crystal simulator
Friction between ordered, atomically smooth surfaces at the nanoscale (nanofriction) is often governed by stick-slip processes. To test long-standing atomistic models of such processes, we implement a synthetic nanofriction interface between a laser-cooled Coulomb crystal of individually addressable ions as the moving object, and a periodic light-field potential as the substrate. We show that s...
متن کاملTuning friction atom - by - atom in an ion - crystal simulator
1. S. Picozzi, C. Ederer, J. Phys. Condens. Matter 21, 303201 (2009). 2. T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93–110 (2012). 3. X. Rocquefelte, K. Schwarz, P. Blaha, S. Kumar, J. van den Brink, Nat. Commun. 4, 2511 (2013). 4. K. Noda, M. Akaki, T. Kikuchi, D. Akahoshi, H. Kuwahara, J. Appl. Phys. 99, 08S905 (2006). 5. N. Abe et al., Phys. Rev. Lett. 99, 227206 (2007). 6. H. Murakawa e...
متن کاملFriction. Tuning friction atom-by-atom in an ion-crystal simulator.
Friction between ordered, atomically smooth surfaces at the nanoscale (nanofriction) is often governed by stick-slip processes. To test long-standing atomistic models of such processes, we implemented a synthetic nanofriction interface between a laser-cooled Coulomb crystal of individually addressable ions as the moving object and a periodic light-field potential as the substrate. We show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2017
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.95.155448